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Compartmentalized reaction-diffusion systems

Francisco Cha´vez and Raymond Kapral
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada

~Received July 28 2000; published 21 December 2000!

Reaction-diffusion systems consisting of a collection of reactive domains separated by chemically inactive
regions are considered. The reactive dynamics is governed by a multistep reaction mechanism and each
reactive domain is specific to a particular elementary step or collection of elementary steps of the global
reaction mechanism. Far-from-equilibrium situations where the global kinetics can give rise to complex states
such as bistability or oscillations are studied. A general method for the calculation of the average concentration
on each reactive domain is presented. The effects of compartmentalization are illustrated by a study of the
influence of diffusion, reactive domain size, and domain distribution on the nature of the stationary states of the
Schlögl model. Compartmentalization can drive the system into and out of the bistable regime of this reactive
system.
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I. INTRODUCTION

If a chemical reaction comprising several element
steps takes place in a medium where the reacting specie
uniformly dispersed on scales which are small compared
the diffusion length, one expects the mass action rate law
describe the dynamics of the chemical concentrations. If
stead the system is inhomogeneous and each elementa
action step, or subset of elementary steps, takes place
specific spatial region of the medium, modifications of t
reaction dynamics may appear. Such compartmentalized
action kinetics can arise from an inhomogeneous distribu
of specific catalytic domains@1#; in biological contexts it
might occur when reactions take place only in specializ
organelles in the cell@2#.

Some limiting cases will serve to illustrate the effects
compartmentalization. Suppose the domains that cata
specific reaction steps are finely dispersed. In this circu
stance the reactive domains in small coarse grained reg
of the system will be coupled strongly by diffusion. All step
of the reaction mechanism will contribute and the dynam
will be described by the global reaction mechanism. Ne
consider the case where the domains are large compare
the diffusion length in the system. In the interior of ea
catalytic domain one will observe behavior corresponding
the particular step of the reaction mechanism that takes p
on the domain but the domains themselves will be coup
by diffusion. We investigate how reactive dynamics chan
from that described locally by specific reaction steps to g
bal behavior involving the full reaction mechanism.

Interesting situations may arise in autocatalytic reacti
carried out under far from equilibrium conditions which ha
been studied extensively@3#. The effects of inhomogeneitie
have been the topics of recent investigations. For exam
inhomogeneous illumination of the light-sensitive Belouso
Zhabotinsky reaction can cause certain steps of the reac
mechanism to occur at different rates inducing variable
citability in the medium@4,5#. Complexation reactions o
starch are believed to play a role in Turing pattern format
in the chlorite-iodide-malonic acid reaction@6# and the ef-
fects of inhomogeneous distributions of complexing age
1063-651X/2000/63~1!/016211~9!/$15.00 63 0162
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on Turing pattern formation have been investigated@7#.
Effects of compartmentalization of the reaction mech

nism on the qualitative dynamics of a system composed
reactive domains have been studied in the earlier@8#. For
instance, it has been shown that changes in reactive dom
separation can alter the stability of the steady state@9# and
can influence the oscillatory dynamics of the system@10,11#.

We consider how compartmentalized reaction kinetics
influence the behavior of reactions occurring under far fr
equilibrium conditions where complex kinetics may give ri
to multiple steady states, oscillations and chaos. In Sec. II
present a general formulation of this problem and show h
one may obtain a set of coupled equations for the mean c
centrations on each domain. We examine regular and di
dered distributions of domains. A specific model reacti
mechanism, the Schlo¨gl model@12#, is considered in Sec. III.
The reaction mechanism for this model consists of two st
and we suppose that the reactions corresponding to t
steps occur in distinct spatial domains. Under far-fro
equilibrium conditions the system may exhibit bistability
appropriate parameter ranges. We show how the steady
bifurcation structure is modified as a result of compartm
talized reaction kinetics. The calculations are carried out
various distributions of catalytic sites and for various boun
ary conditions. The conclusions of the study along with co
ments on other types of compartmentalized reaction dyn
ics are presented in Sec. V.

II. COMPARTMENTALIZED CHEMICAL REACTIONS

We consider a system withm chemically reactive specie
where the overall reaction mechanism consists ofn elemen-
tary steps

(
k51

m

nk
aXk


k2a

ka

(
k51

m

n̄k
aXk ~a51, . . . ,n!. ~1!

Here Xk (k51, . . . ,m) are them chemical species,nk
a and

n̄k
a are the stoichiometric coefficients for reaction stepa, and

the forward and reverse rate constants for this step areka and
k2a , respectively.
©2000 The American Physical Society11-1
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The reaction is assumed to take place in ans-dimensional
medium consisting ofN reactive domains centered atr i ( i
51, . . . ,N), on which reactions corresponding to one
some subset of the elementary steps of the mechanism
place. We denote byV i the region of space occupied by th
reactive domaini. We suppose that reactions occur on
within these domains and that chemical species freely diff
throughout the medium. One may consider other situati
where reactions also occur outside specific catalytic st
@13#. A schematic illustration of such medium for one spa
dimension is shown in Fig. 1.

Such a system is described by a reaction-diffusion eq
tion

]c~r ,t !

]t
5D“

2c~r ,t !1R@c~r ,t !#, ~2!

subject to appropriate boundary and initial conditions. H
c(r ,t)5$ck(r ,t)% is the vector of local concentrations fo
speciesX5$Xk% at time t, D is the diffusion coefficient ma-
trix assumed to be constant and diagonal andR@c(r ,t)#
5$Rk@c(r ,t)#% is the vector of reaction rates whose e
ments can be written as

Rk@c~r ,t !#5(
i 51

N

Rk
$a i %@c~r ,t !#Q i~r !. ~3!

In this equationRk
$a i % is the reaction rate for speciesk corre-

sponding to the elementary steps$a i% that occur in domaini
and U i(r ) is a characteristic function which is unity withi
domaini and zero otherwise,

Q i~r !5H 1 if rPV i ,

0 otherwise.

The formal solution of Eq.~2! is @14#

ck~r ,t !5E G~r ,t;r0,0!fk~r0!dsr0

1E
0

tE G~r ,t;r0 ,t0!Rk@c~r0 ,t0!#dsr0dt0

1DkE
0

t R @G~r ,t;r0 ,t0!“ r0
ck~r0 ,t0!

2ck~r0 ,t0!“ r0
G~r ,t;r0 ,t0!#•n̂dS0dt0, ~4!

FIG. 1. A schematic illustration of a one-dimensional mediu
showing reactive domains centered atxj where reactionsRa j take
place. The system length isL while the reactive domains hav
length l.
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where G(r ,t;r0 ,t0) is the time-dependent Green functio
fk(r ) is the initial condition,n̂ is the unit vector normal to
the boundary surface of the system, anddS0 is a differential
element of the surface area of the system. The first term
this equation represents the effect of the initial condition
the solution and the second term contains the reaction ra
The third term accounts for the effect of the boundary co
ditions on the solution. The third term vanishes if the co
centrations or their gradients at the boundary are prescr
to be zero.

The solution of Eq.~4! is difficult to obtain in the genera
case. To study the bifurcation structure and to simplify t
analysis, instead of computing the concentration fields at
bitrary space points, we focus on the reactive domains
construct a set of equations that show how the dynamics
the various domains is coupled through diffusion. For ea
reactive domainj, we consider the concentration field ave
aged over the domain,

ck, j~ t !5
1

Vj
E ck~r ,t !Q j~r !dsr , ~5!

whereVj is the volume of domainj. The volume average o
Eq. ~4! leads to

ck, j~ t !5I k, j
f 1(

i

N

I k, j i
R 1DkI k, j

B , ~6!

where

I k, j
f 5

1

Vj
E E G~r ,t;r0,0!fk~r0!Q j~r !dsr0dsr , ~7!

I k, j
B 5

1

Vj
E

0

tE R @G~r ,t;r0 ,t0!“ r0
ck~r0 ,t0!

2ck~r0 ,t0!“ r0
G~r ,t;r0 ,t0!#•n̂Q j~r !dS0dsrdt0 ,

~8!

I k, j i
R 5(

i

N
1

Vj
E

0

tE E G~r ,t;r0 ,t0!Rk
$a i %

3@c~r0 ,t0!#Q i~r0!Q j~r !dsr0dsrdt0 . ~9!

We have used Eq.~3! in order the obtain the form of the
reaction contribution in Eq.~9!. If the Green function is
known, integrals~7! and ~8! involve only known quantities
and can be calculated. We concentrate on the reactive
~9!. The integrals in this term can be interpreted as the ef
of the reactions within domaini on the mean concentratio
in domainj. Exact calculation of these terms is in general n
possible. However, if domaini is distant from domainj, we
may computeI k, j i

R for j Þ i by expanding the reaction rate i
domaini in a multipole expansion
1-2
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Rk
$a i %@c~r ,t !#Q i~r !5(

l 50

`
1

l ! F E dsr r l

3Rk
$a i %@c~r ,t !#Q i~r !G( l

“

ld~r2r i !,

where ( l signifies l tensor contractions. For widely sep
rated domains we may retain only the monopole terml 50 in
the above sum to obtain

Rk
$a i %@c~r ,t !#Q i~r !'F E dsrRk

$a i %@c~r ,t !#Q i~r !G
3d~r2r i ! ~rPV j !.

In general the reaction rates will be nonlinear functions
the concentration fields so the volume average will be d
cult to compute exactly. If we neglect the spatial structure
the concentration field over a domain we may write

Rk
$a i %@c~r ,t !#Q i~r !5ViRk

$a i %@ci~ t !#d~r2r i !. ~10!

In this approximation the terms forj Þ i simply involve the
computation of the volume average of the Green funct
over domainj evaluated at the location of the center of d
main i, a quantity which is easily computed once the Gre
function is known.

The diagonal termsi 5 j in Eq. ~9! involve diffusive cou-
pling of spatial points within a single domain and the mu
pole expansion cannot be used. However, as in the cas
the off-diagonal terms, we may still approximate the react
rate within a domain by its value at the mean concentra
within the domain so that

Rk
$a j %@c~r ,t !#'Rk

$a j %@cj~ t !#, ~11!

which neglects reactive correlations within a domain. T
diagonal terms then involve the double integral of the Gre
function over domainj, a quantity which is again easily com
puted if the Green function is known.

Using these approximations, Eq.~6! becomes

ck, j~ t !5I j ,k
f 1DkI k, j

B 1(
i

N E
0

t

vk, j i ~ t,t0!Rk
$a i %@ci~ t0!#dt0 .

~12!

The prefactorsvk, j i are given by

vk, j i ~ t,t0!5
1

Vj
E E

V j

G~r ,t;r0 ,t0!dsr0dsrd j i

1E
V j

G~r ,t;r i ,t0!dsr ~12d j i !. ~13!

Equation ~12!, together with Eqs.~7!, ~8!, and ~13!, have
recast the original reaction-diffusion problem into the fo
of a system ofN3m integral equations. The complexity o
this set of equations will depend on the number of doma
and their spatial configurations. We shall explore the valid
of this reduction in the sequel; however, before doing this
01621
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may construct a further approximate solution which will a
low one to consider complicated configurations of react
domains.

Mean-field approximation. As a further simplification,
particularly useful when the number of domains is large a
randomly distributed, one can sum over all like domains
obtain their mean concentrations, i.e.,ck, j5ck,$ap% for all do-

mains in which the set of$ap% elementary steps take plac
We obtain a system ofn3m equations

ck,$ap%5Wt1(
s51

n E
0

t

W$ap%,$as%
~ t,t0!R$as%@ck,s~ t0!#dt0 ,

~14!

with

Wt5
n

N F(
i

N

I k,i
f d$a i %,$ap%1Dk(

i

N

I k,i
B d$a i %,$ap%G , ~15!

W$ap%,$as%
5

n

N (
i , j

N

vk, j i ~ t,t0!d$a j %,$ap%d$a i %,$as%
. ~16!

Such a description will be useful if we are not concern
with the details of the concentration fields for any spec
configuration of reactive domains but only the behavior
like domains when averaged over realizations of the rand
distribution. The description will also be useful if there a
symmetries that fix the concentrations of like domains to
identical. Equations~12! and~14! will form the basis for the
analysis presented in the following sections.

III. AN EXAMPLE: SCHLO ¨ GL MODEL

As an illustration of the above formalism we consider t
Schlögl model @12#

A
X,
k21

k1

B12X
3X
k22

k2

~17!

in a one-dimensional medium consisting ofN reactive do-
mains of lengthl centered at positionsxi .

In this casen52, a i51,2, for i 51, . . . ,N. Furthermore,
if A and B are pool species whose concentrations are c
stant, there is only one reactive species and we can drop
index k. Depending on the choice of kinetic parameters,
Schlögl model possesses either a single stable steady sta
bistable steady states. To investigate such stable s
we consider the time-independent form of Eq.~2! in one
dimension
1-3
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FRANCISCO CHÁVEZ AND RAYMOND KAPRAL PHYSICAL REVIEW E 63 016211
D
]2c~x!

]x2 52R@c~x!#, ~18!

which supports kinklike solutions separating the two sta
homogeneous states ifR represents the reaction rate for th
full mechanism~17!. Instead, if we consider the compar
mentalized inhomogeneous form of the Schlo¨gl reaction-
diffusion system, different types of behavior are possible
D is small or the reactive domains are large, each dom
will tend to reach the equilibrium concentration correspon
ing to the particular step of the reaction mechanism tak
place in it. For example, type-1 domains, corresponding
the first step of mechanism~17!, will tend to cj5k1a/k21
while the type-2 domains will havec25k2b/k22 . As D in-
creases or the domain size becomes small the system
tend to the bistable values of the homogeneous system.
now study this situation in detail.

For zero-flux boundary conditions or forc(0)5c(L)
50, the third term of Eq.~4! vanishes andI j

B50. If c(0)
5c(L)Þ0 this term reduces to a constant which we callc0.
Also, for one spatial dimension the characteristic funct
Q i(r ) is the Heaviside functionH( l /22ux02xi u). Thus, the
formal solution, Eq.~4! reduces to

c~x!5E G~x,x0!(
i

Ra ic~x0!HS l

2
2ux02xi u Ddx01c0.

~19!

The reaction rates corresponding to the mechanism~17!
are

R1@c~x!#5k1a2k21c~x!,

R2@c~x!#5k2bc~x!22k22c~x!3, ~20!

wherea and b are the constant concentrations of specieA
andB, respectively.

Integration over any particular domainj yields

cj5
1

l (
i
E E G~x,x0!Ra i@c~x0!#HS l

2
2ux02xi u D

3HS l

2
2ux02xj u Ddx0dx1c0, ~21!

which we rewrite in the form

cj5I j j 1(
iÞ j

I j i 1c0. ~22!

Since the first step of the Schlo¨gl model is linear in the
concentration of speciesX, the volume average of this reac
tion rate involves no approximation. Equations~10! and~11!
take the form

Ra i@c~x!#HS l

2
2ux02xi u D5 lRa i~ci !d~x2xj ! ~23!
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Ra j@c~x!#5Ra j~cj !. ~24!

Using these approximations we arrive at the solution

cj5(
i 51

N

v j i R
a i~ci !1c0, ~25!

where the prefactors are given by

v j i 5
1

l E E
V j

G~x,x0!dx0dxd j i 1E
V j

G~x,xi !dx~12d j i !,

~26!

and the integrals are evaluated over the intervalV j5$x:xj
2 l /2<x<xj1 l /2%.

Next, we apply the mean field approximation described
Sec. II A to this model. Let the average concentrations in
domains where the first and second elementary steps o
Schlögl mechanism are active bec1 and c2 , respectively.
We obtain the following system of two algebraic equation

c15W11R
1~c1!1W12R

2~c2!1c0 ,

c25W22R
2~c2!1W21R

1~c1!1c0 , ~27!

where

W115
2

N (
i j

wji da i ,1
da j ,1

,

W225
2

N (
i , j

wji da i ,2
da j ,2

,

W125W215
1

N (
i , j

wji ~12da i ,a j
!. ~28!

These equations are valid for any reaction scheme prov
it can be decomposed into two elementary steps. The in
mation pertaining any specific case is contained in the Gr
function andc0. We now evaluate the prefactorswji for two
particular cases in a finite domain: fixed concentrations
boundaries and zero-flux boundaries.

A. Fixed concentrations at the boundaries

If c(0)5c(L)5cBO , the Green function is@14#

D G~x,x0!5H ~12x0 /L !x if x<x0 ,

x0~12x/L ! if x>x0 .

For this case, sinceG(0,x0)50, we havec05cBO , the con-
centration at the boundaries. In general,cBO is an externally
fixed parameter; however, if we set

cBO5c1

L2xN

x11L2xN
1cNS 12

L2xN

x11L2xN
D ,
1-4
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the system has periodic boundary conditions. In this c
cBO takes the form of a weighted average of the concen
tions of the last and the first domains, depending on th
distances to the boundaries, and is a consequence of th
earity of the interdomain concentration profile.

The prefactors can be readily evaluated:

D wji 5H S 12
xj

L D xj l 2
l 2

6
if xi5xj ,

S 12
xi

L D xj l if xj,xi .

It can also be shown thatwji 5wi j . This expression, along
with the equation for the concentrations at the bounda
and the positions of theN domains,~the set of values of the
N xi) allows the calculation of allcj from a set ofN simul-
taneous equations.

B. Zero-flux boundary conditions

Physically, zero-flux boundary conditions correspond
an isolated system, thus, for a stationary state solution
exist the net production of material in the system must
zero. Mathematically this is represented by the so-ca
Fredholm alternative. In order for a solution to exist it
necessary that

E R@c~x!#50,

where the integral is taken over the entire medium. We
follow the procedure of the previous section if we use
modified Green function@14# which, apart from an additive
constant, has the form

D Gm~x,x0!55
x21x0

2

2L
2x0 if x<x0 ,

x21x0
2

2L
2x if x>x0 .

This form satisfies the boundary conditions

dc

dx
~0!5

dc

dx
~L !50.

After performing the required integrations and subject to
same approximations we arrive at

D wji 5H l 3

12L
2

l 2

6
2S 12

xj

L D xj l if xi5xj ,

l

L S l 2

24
1

xj
2

2 D 2S 12
xi

2L D if xj,xi ,

with wji 5wi j . If we substitute these results into Eq.~25!,
the resulting equation may not naturally satisfy the Fredho
condition, unlessc0, which arises from the additive consta
in the Green function, is suitably chosen.

To determine the appropriate value ofc0 we sum Eqs.
~25! to obtain
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(
j

cj5(
i , j

wji R
a i~ci !1Nc0.

If in this equation we set

c05
1

N (
j

cj1(
i

Ra i~ci !S (
j

wjk2(
j

wji D , ~29!

we arrive at the desired condition

(
i

Ra i~ci !50.

As an example, if we apply Eq.~29! to calculate the value o
c0 in Eq. ~27! we obtain

c05
1

2
~c11c2!1R2~c2!~W112W22!.

In the above expressions for both boundary conditions
v j i factors embody all geometrical information about t
distribution and sizes of the reactive domains. The para
eters characterizing the intrinsic reaction kinetics reside
the Ra i(ci).

IV. RESULTS FOR SCHLÖGL MODEL

The behavior of this model in a homogeneous medium
well known. The stationary states can be found from
equation

k22c32k2bc21k21c2k1a50, ~30!

or using scaled concentration variablesc5xAk1a/k2b, from
ax32x21bx2150, where

a5
k22

k1a S k1a

k2bD 3/2

, b5
k21

k1a S k1a

k2bD 1/2

.

The cusp-shaped bistability region in thea-b parameter
plane is shown in Fig. 2.

We investigate the effect of the sizes and distribution
the reactive domains on the nature of the stationary sta
We assume that the Schlo¨gl reaction occurs on a substra
consisting of a collection of domains of types 1 and 2
length l: only the first reaction step can occur on type-1 d
mains while type-2 domains support the second reac
step.

A. Two-domain case

Simple analytical results can be obtained for a medium
sizeL with one type-1 domain centered atx15L/4 and one
type-2 domain centered atx253L/4. Thus, the distribution is
completely defined by the values ofl andL or, alternatively,
by l andd5x22x1 .

Settingc05(c11c2)/2, from Eq.~25! we arrive at

R1~c1!1R2~c2!50, ~31!
1-5
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1

2g
@R1~c1!2R2~c2!#5c12c2 ,

whereR1 andR2 are given by Eq.~20!. This set of equations
is valid for both fixed-concentration and zero-flux bounda
conditions~BC! with

g5H 6D

3dl22l 2 , fixed-concentration BC,

24dD

l ~24d21 l 228dl !
, zero-flux BC.

Notice thatg, which is proportional toD, incorporates all
of the nonkinetic parameters of the system, including all
parameters that describe the spatial characteristics of the
dium. In these equationsl<d, since we are only concerne
with nonoverlapping domains.

The solution of these equations for the Schlo¨gl model can
be found easily. We obtain

c15
gc21k1a

g1k21
,

andc2 is the root of

k22c2
32k2bc2

21S gk21

g1k21
D c22

gk1a

g1k21
50. ~32!

This equation has exactly the same form as Eq.~30! for a
simple homogeneous substrate, except for the fa
gk21 /(g1k21) in the terms linear and independent ofc2 . If
the polynomial forc2 is cast in the formasx

32x21bsx
2150, the coefficients are given by

as5aA g

g1k21
, bs5bA g

g1k21
.

Thus, if the reaction occurs in compartmentalized doma
the steady states can be related to those for a homogen

FIG. 2. Phase diagram for the homogeneous Schlo¨gl model in
the space of reduced parametersa and b, showing the regions of
bistability ~bs! and monostable states~ms!. The cusp point is lo-
cated atac531/2/9 andbc531/2.
01621
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medium through a rescaling of the kinetic parametersa and
b by the factorAg/(g1k21),1. This factor tends to 1 as
D→`.

We have compared these analytical results to results f
numerical solutions of the reaction-diffusion equation f
several cases and found excellent agreement. We have
structed bifurcation diagrams using the diffusion coefficie
D as the control parameter~keeping the other paramete
constant!. If the kinetic parameters are chosen so that
system is bistable for a homogeneous medium, the follow
behavior is observed: for high values of the diffusion co
stant the system exhibits bistability; for low values there e
ists only one solution. The bifurcation occurs at some int
mediate D* , which can be predicted from Eq.~32!. A
comparison of the analytical and the numerical solutions
shown in Fig. 3.

B. Regular and random distributions of N domains

An interesting special case is a system with perio
boundary conditions where theN reactive domains are
placed regularly such that the distance between any adja
pair is the same throughout the medium. Physically this s
ation may be realized in a reactive medium in the form o
thin ring, large enough so curvature effects can be neglec
The behavior for this reactive domain distribution can
determined from that in a unit cell with two domains, simil
to that described in the previous section for fixed concen
tion boundary conditions, by takingcBO5(c11c2)/2.

For such a regular domain distribution the equations
the zero-flux case also take a simple form since in this
cumstance Eq.~29! reduces toc05(c11c2)/25cBO due to
the symmetry of the distribution. For any particular distrib
tion of reactive domains the average concentration in e
domain can be obtained by solving the system of equati

FIG. 3. Bifurcation diagram for the Schlo¨gl model for a com-
partmentalized one-dimensional medium. Solid lines represent
solution from Eq. ~31!. Stars are numerical solutions of th
reaction-diffusion equation. The ordinate is the concentration a
aged over the entire medium. The kinetic parameters arek21

50.014,k1a50.001, 8/3k2b50.095, 16k2250.24 and correspond
to a point in the bistable region of the homogeneous system.
dotted line represents the unstable state.
1-6
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~25!. The geometric data defining the distribution is co
tained in the prefactorswji . Furthermore, since no chemic
reaction occurs in the parts of the medium separating
reactive domains the interdomain concentration profile is
ear to a good approximation. In this manner a concentra
profile can be reconstructed for the spatially extended
dium and compared to results from numerical solutions
the reaction-diffusion equation. Such a comparison is p
sented in Figs. 4 and 5 in the bistable regime for fixed c
centration and zero-flux BC, respectively. The analytical
lutions capture the gross features of both the monostable
bistable regimes but the concentration profiles differ in de
since the reactive domain size is not much greater than
diffusion length and the analytical solution contains inform
tion only about the average concentration within each of
domains.

If the number of reactive domains is large and the d
mains are randomly distributed one must solve a large se
coupled equations. In this circumstance the mean-field
proximation, Eq.~14!, provides a means to study the bifu
cation structure. As an illustration we have considered a s

FIG. 4. Bistable regime. Solid line: reconstructed concentrat
profile calculated from Eqs.~25! with periodic boundary conditions
Crosses: numerical solution of the reaction-diffusion equation.~a!
High concentration solution,~b! low concentration solution. The
medium in this case has four reactive domains~two type-1 and two
type-2! of length l 520 with centers atxi520, 60, 100, 140. All
kinetic parameters are the same as in Fig. 3.
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tem of sizeL51000 withN550 andl 510. Since the mean
field approximation is expected to be valid only in
statistical sense and not for any particular realization
have calculated the average concentrations over 10 rea
tions of the distribution of reactive domains. Figure 6 co
pares the mean field and simulation results for perio
boundary conditions. Similar results were obtained for ze
flux boundary conditions.

The results show that mean-field theory is able to ac
rately reproduce the bifurcation diagram obtained from sim
lations averaged over realizations of the distribution of re
tive sites. The results also show that if the kinetic parame
are fixed so that the homogeneous system is bistable, the
any distribution of reactive domains there is a critical diff
sion constantD* above which bistability is observed. Below
D* only the high concentration solution exists.

The effect of the length of the domainsl and of the inter-
domain distanced can be elucidated by examining Eq.~32!
and the definition ofg ; g decreases monotonically withd
and, thus, increasingd has an effect qualitatively similar to
that of decreasingD. As a consequence, the system can u
dergo a bifurcation by changing the separation of the
mains.

If the domain size is large compared to the diffusi
length the interiors of the domains will be effectively deco
pled from the rest of the system and higher values ofD will

n

FIG. 5. Bistable regime. Solid line: reconstructed concentrat
profile calculated from Eqs.~25! with zero-flux boundary condi-
tions. Crosses: numerical solution of the reaction-diffusion eq
tion. ~a! High concentration solution,~b! low concentration solu-
tion. The medium and kinetic parameters are the same as in Fi
1-7
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be required to observe bistability. Thus, the system und
goes a bifurcation from bistability to monostability asl is
increased. However, if the inter-domain distance is kept c
stant asl is increased, effectively the domains get closer
each other and this could lead again to bistability asl /d
→1. This behavior of the stationary state is supported by
model and has been confirmed by numerical simulations.
though these results were obtained for the Schlo¨gl mecha-
nism similar conclusions apply to a general chemical syst

A feature of this study is the possibility of inducing bist
bility from compartmentalization in a range of kinetic p
rameters for which the homogeneous system is monosta
This is illustrated by pointA of Fig. 7. We have shown tha
for a regular distribution of reactive domains the compa
mentalization of the medium is equivalent to a contraction

FIG. 6. Bifurcation diagram constructed from an average o
ten realizations of the distribution of reactive domains with perio
boundary conditions. Solid lines: results from Eqs.~27!. Crosses:
numerical solution of the reaction-diffusion equation. The ordin
is the concentration averaged over the entire medium and rea
tions. All kinetic parameters are the same as in Fig. 3.

FIG. 7. Phase diagram for the Schlo¨gl model. At infinite diffu-
sion the inhomogeneous medium case is equivalent to the hom
neous case. Asg is decreased~by decreasingD or increasingl! the
system moves on the straight line toward the origin; it becom
bistable atB and again monostable atC.
01621
r-

-
o

r
l-

.

le.

-
f

kinetic parameters. For infinite diffusion, for any given su
strate, the contraction factorAg/(g1k21) is equal to 1 and
we recover the homogeneous substrate case: pointA. As dif-
fusion is decreased, or equivalently asl is increased, the stat
of the system is found on the line connecting pointA with
the origin. First, the system will undergo a bifurcation
bistability at pointB, and finally, at pointC, it will become
monostable again. Figure 8 shows the bifurcation diagr
under such circumstances. The range of values ofg for
which bistability exists can be calculated from the definitio
of a andb.

It is also clear from Fig. 7, that systems located in t
quadrant defined byb,bc and a.ac will remain
monostable since variations ofg will not cause the system to
enter the cusp bistable region.

V. DISCUSSION

The results in this paper show that there is a nontriv
interplay between the diffusion process and compartmen
ized reaction dynamics. For sufficiently large diffusion co
stants the behavior of the system depends weakly on
spatial characteristics of the medium since diffusion is a
to homogeneize the concentration field among the reac
domains. In this limit the compartmentalized system beha
like a homogeneous system. For lower values of the dif
sion coefficient or larger reactive domains, concentrat
gradients begin to form and lead to behavior qualitativ
different from that of the homogeneous system. Finally,
the limit of very low diffusion each domain acts indepe
dently and the concentrations attain values characteristi
the steady states determined by reaction steps which
place on the domains.

We have considered only a few of the possibilities ev
for the rather simple Schlo¨gl model. For example, one ma
also study situations where both reaction steps occur on
same reactive domain. In such a case, forD50, each domain

r
c

e
a-

e-

s

FIG. 8. Bifurcation diagram corresponding to a system which
at pointA for the homogeneous medium. At high diffusion~high g!
it is monostable; at intermediateD it becomes bistable and agai
monostable at low values ofD ~low g!. ^c& is the concentration
averaged over the entire medium. All parameters as in Fig. 3 w
k2150.024. Dotted line is the unstable state.
1-8
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can attain a steady state concentration independent of
other domains. If the kinetic parameters lie within t
bistable regime, the compartmentalized system will exh
several solutions corresponding to all posible combinati
of the two stable steady state solutions. WhenD.0 but suf-
ficiently small, or interdomain distance is large, a large va
ety of inhomogeneous solutions with different domains
different stable states are found to persist. Similar situati
arise if the domains support only certain reaction steps.
example, suppose one has a sequence of domains wher
two steps of the reaction mechanism alternate from one
main to the next but the distance of a domain to its rig
neighbor is much greater that to its left neighbor. On a la
scales this distribution is equivalent to that of a sequenc
c

.

,

-

R

01621
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or
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domains that support both reaction steps separated by l
interdomain distances.

The methodology developed here is not restricted to tim
independent states. In this context, Eq.~6! provides a means
to study the effect of compartmentalization on the proper
of oscillatory or chaotic systems in one or more spatial
mensions. One may consider applications to specifically
signed arrays of catalytic sites to probe reaction mechani
or to study how aspects of the reaction mechanism af
chaotic synchronization processes@15#.
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