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Compartmentalized reaction-diffusion systems
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Reaction-diffusion systems consisting of a collection of reactive domains separated by chemically inactive
regions are considered. The reactive dynamics is governed by a multistep reaction mechanism and each
reactive domain is specific to a particular elementary step or collection of elementary steps of the global
reaction mechanism. Far-from-equilibrium situations where the global kinetics can give rise to complex states
such as bistability or oscillations are studied. A general method for the calculation of the average concentration
on each reactive domain is presented. The effects of compartmentalization are illustrated by a study of the
influence of diffusion, reactive domain size, and domain distribution on the nature of the stationary states of the
Schlgyl model. Compartmentalization can drive the system into and out of the bistable regime of this reactive
system.
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[. INTRODUCTION on Turing pattern formation have been investigdtefd
Effects of compartmentalization of the reaction mecha-

If a chemical reaction comprising several elementarynism on the qualitative dynamics of a system composed of
steps takes place in a medium where the reacting species dieactive domains have been studied in the eafBgr For
uniformly dispersed on scales which are small compared téstance, it has been shown that changes in reactive domain
the diffusion length, one expects the mass action rate laws tgeparation can alter the stability of the steady sf@feand
describe the dynamics of the chemical concentrations. If incan influence the oscillatory dynamics of the sysfam11].
stead the system is inhomogeneous and each elementary re-We consider how compartmentalized reaction kinetics can
action step, or subset of e|ementary steps, takes p|ace inilaﬂuence the behavior of reactions OCCUrring under far from
specific spatial region of the medium, modifications of the€quilibrium conditions where complex kinetics may give rise
reaction dynamics may appear. Such compartmentalized ré0 multiple steady states, o§cillatior!s and chaos. In Sec. Il we
action kinetics can arise from an inhomogeneous distributioresent a general formulation of this problem and show how
of specific catalytic domain§l]; in biological contexts it ©One may obtain a set of coupled equations for the mean con-
might occur when reactions take place only in Specianze(pentrations on each domain. We examine regular and disor-
organelles in the ce(l2]. dered distributions' of domains. A specific model reaction

Some limiting cases will serve to illustrate the effects of Mechanism, the Schipmodel[12], is considered in Sec. IlI.
compartmentalization. Suppose the domains that catalythe reaction mechanism for th|s_model consists qf two steps
specific reaction steps are finely dispersed. In this circum@nd we suppose that the reactions corresponding to these
stance the reactive domains in small coarse grained regiorf§€Ps occur in distinct spatial domains. Under far-from-
of the system will be coupled strongly by diffusion. All steps equilibrium conditions the system may exhibit bistability in
of the reaction mechanism will contribute and the dynamics@Ppropriate parameter ranges. We show how the steady state
will be described by the global reaction mechanism. NextPifurcation structure is modified as a result of compartmen-
consider the case where the domains are large compared ®Jized reaction kinetics. The calculations are carried out for
the diffusion length in the system. In the interior of eachVvarious distributions of catalytic sites and for various bound-
catalytic domain one will observe behavior corresponding ty conditions. The conclusions of the study along with com-
the particular step of the reaction mechanism that takes pladgents on other types of compartmentalized reaction dynam-
on the domain but the domains themselves will be coupledcs are presented in Sec. V.
by diffusion. We investigate how reactive dynamics changes
from that described locally by specific reaction steps to glo- . COMPARTMENTALIZED CHEMICAL REACTIONS
bal behavior involving the full reaction mechanism. W id i itm chemicall . .

Interesting situations may arise in autocatalytic reactions € consider a system witin chemically reactive Species

. o . where the overall r ion mechanism consi men-
carried out under far from equilibrium conditions which have ere the overall reaction mechanism consists efeme

been studied extensivel]. The effects of inhomogeneities tary steps

have been the topics of recent investigations. For example, m k, M

inhomogeneous illumination of the light-sensitive Belousov- 2 VEX = 2 VX (a=1,...n). (1)
Zhabotinsky reaction can cause certain steps of the reaction k=1 k_ k=1

mechanism to occur at different rates inducing variable ex-

citability in the medium[4,5]. Complexation reactions of HereX (k=1,... m) are them chemical speciesy and

starch are believed to play a role in Turing pattern formationvy are the stoichiometric coefficients for reaction ste@nd
in the chlorite-iodide-malonic acid reactigf] and the ef- the forward and reverse rate constants for this stejg aeand
fects of inhomogeneous distributions of complexing agentk_,, respectively.
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l where G(r,t;rq,tg) is the time-dependent Green function,
¢(r) is the initial condition,i is the unit vector normal to
0 X Xy e XN L the boundary surface of the system, atfg} is a differential

element of the surface area of the system. The first term in
an this equation represents the effect of the initial condition on
R the solution and the second term contains the reaction rates.
FIG. 1. A schematic illustration of a one-dimensional medium 1 N€ third term accounts for the effect of the boundary con-
showing reactive domains centeredxatwhere reaction®“i take ~ ditions on the solution. The third term vanishes if the con-
place. The system length is while the reactive domains have Centrations or their gradients at the boundary are prescribed
lengthl. to be zero.
The solution of Eq(4) is difficult to obtain in the general
The reaction is assumed to take p|ace irsatimensional case. To StUdy the bifurcation structure and to S|mpI|fy the
medium consisting oN reactive domains centered gt (i analysis, instead of computing the concentration fields at ar-
=1,... N), on which reactions corresponding to one orbitrary space points, we focus on the reactive domains and
some subset of the elementary steps of the mechanism tak@nstruct a set of equations that show how the dynamics on
p|ace. We denote b@l the region of space Occupied by the the various domains is Coupled through diffusion. For each
reactive domaini. We suppose that reactions occur on|y reactive domail’j, we consider the concentration field aver-
within these domains and that chemical species freely diffus@ged over the domain,
throughout the medium. One may consider other situations
where reactions also occur outside specific catalytic states 1
[13]. A schematic illustration of such medium for one space Cy,j(1) = Vf Ci(r,)®;(r)d°r, 5
dimension is shown in Fig. 1. J

Such a system is described by a reaction-diffusion equa- _ B
tion whereV; is the volume of domain. The volume average of

Eq. (4) leads to

oy 1Y)

R R

ac(r,t)
ot

=DV2c(r,t)+R[c(r,t)], 2) N
O (D =1+ 2 1+ Dy, (6)
subject to appropriate boundary and initial conditions. Here :
c(r,t)={cy(r,t)} is the vector of local concentrations for
speciesX={X,} at timet, D is the diffusion coefficient ma- where
trix assumed to be constant and diagonal &fja(r,t)]
={Ry[c(r,t)]} is the vector of reaction rates whose ele- 1
ments can be written as I‘k’fj=v—f f G(r,t;r0,0) ¢ (rg)O;(r)d°rod®r,  (7)
i

N
Riler,H)]=>, R c(r,t)]0;(r). &) 1 ft
= B=y || 1otV eot

In this equatiorR." is the reaction rate for speci&sorre-
. X g G0, to) V1 G(1 6 0,t0) ]+ A0, (N dSydPrdty,

sponding to the elementary stefag} that occur in domain

and ©,(r) is a characteristic function which is unity within (8)
domaini and zero otherwise,
N
1 if req;, R 1ftff ()
(r) = IR.=> = G(r,t;ry,to) R
(1) [O otherwise. I Vi Jo ok
The formal solution of Eq(2) is [14] X[c(ro,to)10i(ro)®;(r)drodrdty.  (9)
We have used Ed3) in order the obtain the form of the
— . S
Ck(r’t)_f G(r,t;r0,0) i (rg)d°rg reaction contribution in Eq(9). If the Green function is
. known, integralg7) and (8) involve only known quantities
+f f G(r,t;r o, to) Ri[ C(To,to) 1dT od 1o and can.be calcu!ateq. We concentr_ate on the reactive term
0 (9). The integrals in this term can be interpreted as the effect

. of the reactions within domainon the mean concentration
+Dkf % [G(r,t;ro,to)VrOCk(ro,to) in do_malnj. Exact ca_lculatloq c_Jf th_ese terms isin ge_:_neral not
0 possible. However, if domainis distant from domairn, we
_ . may computd .. for j #i by expanding the reaction rate in
~C(ro,to) Vi G(r,tiro,to) ]- Ad Sdty, (4) domaini in a rlr(ijulltipole expansion
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1 may construct a further approximate solution which will al-
R{k“‘}[c(r,t)](@i(r):E I_IU dsr r! low one to consider complicated configurations of reactive
=0t domains.
Mean-field approximationAs a further simplification,
X Rf(“i}[c(r,t)]@)i(r)}@'v'5(r—ri), particularly useful when the number of domains is large and

randomly distributed, one can sum over all like domains to

where ©' signifies| tensor contractions. For widely sepa- Obtain their mean concentrations, i@, = C (4 for all do-
rated domains we may retain only the monopole te#n® in ~ mains in which the set of«,} elementary steps take place.
the above sum to obtain We obtain a system af X m equations

R c(r,t)]0(r)~

derR{k“i}[c(r,t)](ai(r)} " .
Ck,{ap}:WtJFSZl JOW{aP},{as}(t,to)R “si[cy s(to) dto,

Xo(r—rp) (refl)). (14)

In general the reaction rates will be nonlinear functions of

the concentration fields so the volume average will be diffi-with

cult to compute exactly. If we neglect the spatial structure of

the concentration field over a domain we may write { N N

n
_ P B
Wi={ Z 'k,i5{ai},{ap}+Dk§i: leiOapdag | (19

Rf(“i}[c(r,t)](@i(r)=ViR,{(ai}[Ci(t)]5(f—ri)- (10

In this approximation the terms fgr#i simply involve the
computation of the volume average of the Green function n
over domainj evaluated at the location of the center of do- Wiaghfag = Nizj 01 i (610) O} fap} Oahfag - (16)
maini, a quantity which is easily computed once the Green ’

function is known.

The diagonal terms=j in Eq. (9) involve diffusive cou- Such a description will be useful if we are not concerned
pling of spatial points within a single domain and the multi- with the details of the concentration fields for any specific
pole expansion cannot be used. However, as in the case eénfiguration of reactive domains but only the behavior of
the off-diagonal terms, we may still approximate the reactiorlike domains when averaged over realizations of the random
rate within a domain by its value at the mean concentratiorlistrioution. The description will also be useful if there are

N

within the domain so that symmetries that fix the concentrations of like domains to be
identical. Equation$12) and(14) will form the basis for the
R{kai}[c(r,t)]~Rf(“i}[cj(t)], (11)  analysis presented in the following sections.
which neglects reactive correlations within a domain. The .
diagonal terms then involve the double integral of the Green IIl. AN EXAMPLE: SCHLO GL MODEL
function over domaif, a quantity which is again easily com- g ap jllustration of the above formalism we consider the
puted if the Green function is known. Schiggl model[12]
Using these approximations, E@) becomes
N ¢ ky
¢ B {ai} A=—X
Ck,j(t) =1 j,k+ Dkl K,j + EI Jowk'ji (t,to) Rk [Ci(to)]dto . \k— ’
-1
(12)
The prefactorsy, ; are given b k2
p k.ji g y B+ 2X=3X (17)
)

1

wk‘ji(t,to):vf JQ G(r,t;ro,to)dsrodsréji
: : in a one-dimensional medium consisting Mfreactive do-
mains of length centered at positions .

In this casen=2, «;=1,2, fori=1, ... N. Furthermore,
if A andB are pool species whose concentrations are con-
Equation (12), together with Eqs(7), (8), and (13), have stant, there is only one reactive species and we can drop the
recast the original reaction-diffusion problem into the formindex k. Depending on the choice of kinetic parameters, the
of a system ofNXm integral equations. The complexity of Schlal model possesses either a single stable steady state or
this set of equations will depend on the number of domaindistable steady states. To investigate such stable states
and their spatial configurations. We shall explore the validitywe consider the time-independent form of E@) in one
of this reduction in the sequel; however, before doing this wedimension

+f G(r,t;ri,to)dsr(1_5ji). (13)
Y
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&ZC(X) and
D =—-R[c(X)], (18
X R¥[c(x)]=R%(c;). (24)

which supports kinklike solutions separating the two stable Using these approximations we arrive at the solution
homogeneous states™ represents the reaction rate for the

full mechanism(17). Instead, if we consider the compart- N

mentalized inhomogeneous form of the Scfiloeaction- ¢;=, w;iR(c;)+cP, (25)
diffusion system, different types of behavior are possible. If 1=

D is small or the reactive domains are large, each domain .

will tend to reach the equilibrium concentration correspond-here the prefactors are given by

ing to the particular step of the reaction mechanism taking 1

place in it. For example, type-1 domains, corresponding to wji:_f f G(Xlxo)dXOdX5ji+f G(x,x)dx(1— &),
the first step of mechanisiti7), will tend to c;=k;a/k_; | Q; Q;

while the type-2 domains will have,=k,b/k_,. As D in- (26)
creases or the domain size becomes small the system will ) ]

tend to the bistable values of the homogeneous system. Wad the integrals are evaluated over the intefgi={x:x;

now study this situation in detail. —12=x=x;+1/2}. _ o o
For zero-flux boundary conditions or faz(0)=c(L) Next, we apply the mean field approximation de;crlbgd in
—0, the third term of Eq{4) vanishes and®=0. If c(0)  Sec: llAto this model. Let the average concentrations in all
=c&L)¢O this term reduces to a constant \;vhich we cAll domains where the first and second elementary steps of the
Also, for one spatial dimension the characteristic functionSCh[cgl 'T‘eCha”'Sm are active bey and c,, res_pectlvel_y. .
@,(r) is the Heaviside functiot((1/2— |xo—x;|). Thus, the We obtain the following system of two algebraic equations:

formal solution, Eq(4) reduces to
a4 ¢1 =Wy RY(cq) +WpR%(cy) +¢2,

I
c(x)=J G(X,X0) X R“ic(xo)H(E—lxo—xi| dxo+cP. Cr=WpR?(C,) + WyRY(cy) + P, 27
I
(199 where
The reaction rates corresponding to the mechar(itim 2
are anﬁ% Wji 0;,10a;,1,

RYc(x)]=kia—k_1c(X), 2
sz=ﬁi21, Wji 0;,20a,2,

RZ[c(x)]=kabe(x)?—k_,c(x)?, (20
wherea andb are the constant concentrations of spedes Wore Worm— S W (1— 8 28
andB, respectively. 127 TN .EJ i(1= ;o) (28)

Integration over any particular domajiryields
These equations are valid for any reaction scheme provided
1 _ I it can be decomposed into two elementary steps. The infor-
Cj :I_Z‘ f f G(X'Xo)Ra'[C(Xo)]H(i_ |X0_Xi|) mation pertaining any specific case is contained in the Green
function andc®. We now evaluate the prefactong; for two

I 0 particular cases in a finite domain: fixed concentrations at
XH §_|X0_Xi| dxodx+c”, (21)  poundaries and zero-flux boundaries.
which we rewrite in the form A. Fixed concentrations at the boundaries

If c(0)=c(L)=cgqo, the Green function i§14]

cj=|jj+; Iji+c®. (22) (1=xo/L)x if x=<Xo,

D G(x,Xg)= [ Xo(1=x/L) if x=Xg.

Since the first step of the Sclgbomodel is linear in the _ _
concentration of species, the volume average of this reac- For this case, sinc&(0,x0) =0, we haVGDO% Cgo. the con-
tion rate involves no approximation. Equatiofi®) and(11)  centration at the boundaries. In genealp is an externally

take the form fixed parameter; however, if we set
| L—Xyn L—Xy
R“i[c(x)]H(§—|xo—xi|)=IR“i(ci)5(x—xj) (23 CBO:C1—X1+L_XN+CN 1_—x1+L—xN ,
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the system has periodic boundary conditions. In this case

Cgo takes the form of a weighted average of the concentra- > cj= > w;R%(c)+Nc.

tions of the last and the first domains, depending on their ! H

distances to the boundaries, and is a consequence of the lig-, this equation we set

earity of the interdomain concentration profile.
The prefactors can be readily evaluated:

2

1— %)XH—% if Xi:Xj ,

Dw; = we arrive at the desired condition
(1_ﬁ)xl.| if x;<x;.

L > Rei(c;)=0.

It can also be shown that;; =w;; . This expression, along |

with the equation for the concentrations at the boundarieps an example, if we apply Eq29) to calculate the value of

and the positions of thél domains,(the set of values of the ¢ in Eq. (27) we obtain

N x;) allows the calculation of ak; from a set ofN simul-

taneous equations. 1

COZE (C1+C2) +R?(Cp) (Wyy— Wpy).

B. Zero-flux boundary conditions

Physically, zero-flux boundary conditions correspond to In the above expressions for both boundary conditions the
an isolated system, thus, for a stationary state solution teji factors embody all geometrical information about the
exist the net production of material in the system must be_distribution and sizes of the reactive domains. The param-
zero. Mathematically this is represented by the so-calle@ters characterizing the intrinsic reaction kinetics reside in
Fredholm alternative. In order for a solution to exist it is the R(c;).
necessary that

IV. RESULTS FOR SCHLO GL MODEL

f Rlc(x)]=0, The behavior of this model in a homogeneous medium is
well known. The stationary states can be found from the
where the integral is taken over the entire medium. We carquation
follow the procedure of the previous section if we use a
modified Green functiofil4] which, apart from an additive k_,c3—k,bc?+k_;c—k;a=0, (30)
constant, has the form
or using scaled concentration variabtes x\k;a/k,b, from

2, 2
X;_Xo_xo it x<Xo, ax3—x?+ Bx—1=0, where
ST O x if x=xq. “Tkalkb p= kia | kob

The cusp-shaped bistability region in theg parameter
plane is shown in Fig. 2.
dc dc We investigate the effect of the sizes and distribution of
ax(0=gx(L=0. the reactive domains on the nature of the stationary states.
We assume that the Sclgloreaction occurs on a substrate
After performing the required integrations and subject to theconsisting of a collection of domains of types 1 and 2 of

This form satisfies the boundary conditions

same approximations we arrive at lengthl: only the first reaction step can occur on type-1 do-
T mains while type-2 domains support the second reaction
X.
i TR step.
— | 1- =X if X=X,
126 |1 e
D w;j; 1112 %2 X A. Two-domain case
=+ 21 i x<x, , . : .
L\24 2 2L ! Simple analytical results can be obtained for a medium of

. _ . sizeL with one type-1 domain centeredt=L/4 and one
with wj; =w;; . If we substitute these results into E@S),  type-2 domain centered &j=3L/4. Thus, the distribution is

the resulting equation may not naturally satisfy the Fredholntompletely defined by the values loandL or, alternatively,
condition, unlesg®, which arises from the additive constant by | andd=xX,—x; .

To determine the appropriate value of we sum Egs.
(25) to obtain RY(c;)+R?%(c,) =0, (31)
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Y
FIG. 2. Phase diagram for the homogeneous Rghimodel in FIG. 3. Bifurcation diagram for the Schdgbmodel for a com-

the space of reduced parametersind 8, showing the regions of partmentalized one-dimensional medium. Solid lines represent the
bistability (bs) and monostable statéms). The cusp point is lo- solution from Eq.(31). Stars are numerical solutions of the
cated ate,=3Y%9 andB,=3%2 reaction-diffusion equation. The ordinate is the concentration aver-
aged over the entire medium. The kinetic parameters karg
1 =0.014,k;a=0.001, 8/%,b=0.095, 1€&_,=0.24 and correspond
—[RY(c;)—R?(cy)]=c1—¢Cy, to a point in the bistable region of the homogeneous system. The
2y .
dotted line represents the unstable state.

whereR! andR? are given by Eq(20). This set of equations
is valid for both fixed-concentration and zero-flux boundarymedium through a rescaling of the kinetic parameteend

conditions(BC) with B by the factoryy/(y+k_4)<1. This factor tends to 1 as
D—o0,
6D We have compared these analytical results to results from
——, fixed- tration B . P ytica' rest .
3dl—-21¢’ ixed-concentration BC, numerical solutions of the reaction-diffusion equation for
Y= 24dD several cases and found excellent agreement. We have con-
zero-flux BC. structed bifurcation diagrams using the diffusion coefficient

2 2 ’
|(24d"+17—8dl) D as the control parametdkeeping the other parameters

constankt If the kinetic parameters are chosen so that the
ystem is bistable for a homogeneous medium, the following
ehavior is observed: for high values of the diffusion con-
stant the system exhibits bistability; for low values there ex-
ists only one solution. The bifurcation occurs at some inter-
mediate D*, which can be predicted from Eq32). A
comparison of the analytical and the numerical solutions is
shown in Fig. 3.

Notice thaty, which is proportional td, incorporates all
of the nonkinetic parameters of the system, including all th
parameters that describe the spatial characteristics of the m
dium. In these equatiors<d, since we are only concerned
with nonoverlapping domains.

The solution of these equations for the Sciilmodel can
be found easily. We obtain

’)/Cz+ kla
' ytrkog ' B. Regular and random distributions of N domains
andc, is the root of An interesting special case is a system with periodic
boundary conditions where thd&l reactive domains are
3 ) vk ykia placed regularly such that the distance between any adjacent
k-2~ kabcy+ vtk 1) STk, =0. (320 pairis the same throughout the medium. Physically this situ-

ation may be realized in a reactive medium in the form of a
This equation has exactly the same form as @) for a  thin ring, large enough so curvature effects can be neglected.
simple homogeneous substrate, except for the factofhe behavior for this reactive domain distribution can be
yk_1/(y+k_;) inthe terms linear and independentoef If determined from that in a unit cell with two domains, similar
the polynomial forc, is cast in the formax3—x2+ B  to that described in the previous section for fixed concentra-

—1=0, the coefficients are given by tion boundary conditions, by takingso=(c4+C5)/2.
For such a regular domain distribution the equations for
02 vy the zero-flux case also take a simple form since in this cir-
TN TR, Bs= Yk o cumstance Eq(29) reduces tacy=(c;+ C,)/2=Cgo due to

the symmetry of the distribution. For any particular distribu-
Thus, if the reaction occurs in compartmentalized domainsion of reactive domains the average concentration in each
the steady states can be related to those for a homogeneadsmain can be obtained by solving the system of equations
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2.2
2.0
1.8
1.8
c(x
c(x) (x)
1.6 14
1.4 i - .
YO0 80 120 160
1.0 1 1 \ ) 1 1 1 X
0 40 80 120 160
X
0.15
0.12 T y T T T T T
0.13
c(x
c(x) ()
0.11 0.11
0095 —40 80 120 160
X
0.10 L L L L L L 1 FIG. 5. Bistable regime. Solid line: reconstructed concentration
0 40 80 120 160 . . .
X profile calculated from Eqs(25) with zero-flux boundary condi-

tions. Crosses: numerical solution of the reaction-diffusion equa-
FIG. 4. Bistable regime. Solid line: reconstructed concentratiorfion. (& High concentration solution(b) low concentration solu-
profile calculated from Eq$25) with periodic boundary conditions. tion. The medium and kinetic parameters are the same as in Fig. 4.

Crosses: numerical solution of the reaction-diffusion equatian. ] ) )
High concentration solution(b) low concentration solution. The tem of sizeL = 1000 withN=50 andl = 10. Since the mean-

medium in this case has four reactive domdims type-1 and two ~ field approximation is expected to be valid only in a
type-2 of lengthl =20 with centers ak;=20, 60, 100, 140. All  statistical sense and not for any particular realization we
kinetic parameters are the same as in Fig. 3. have calculated the average concentrations over 10 realiza-
tions of the distribution of reactive domains. Figure 6 com-
(25). The geometric data defining the distribution is con-pares the mean field and simulation results for periodic
tained in the prefactors;; . Furthermore, since no chemical boundary conditions. Similar results were obtained for zero-
reaction occurs in the parts of the medium separating th8ux boundary conditions.
reactive domains the interdomain concentration profile is lin- The results show that mean-field theory is able to accu-
ear to a good approximation. In this manner a concentrationately reproduce the bifurcation diagram obtained from simu-
profile can be reconstructed for the spatially extended melations averaged over realizations of the distribution of reac-
dium and compared to results from numerical solutions otive sites. The results also show that if the kinetic parameters
the reaction-diffusion equation. Such a comparison is preare fixed so that the homogeneous system is bistable, then for
sented in Figs. 4 and 5 in the bistable regime for fixed conany distribution of reactive domains there is a critical diffu-
centration and zero-flux BC, respectively. The analytical sosion constanD* above which bistability is observed. Below
lutions capture the gross features of both the monostable arid* only the high concentration solution exists.
bistable regimes but the concentration profiles differ in detail The effect of the length of the domaihand of the inter-
since the reactive domain size is not much greater than théomain distancel can be elucidated by examining E®2)
diffusion length and the analytical solution contains informa-and the definition ofy; y decreases monotonically witth
tion only about the average concentration within each of theand, thus, increasing has an effect qualitatively similar to
domains. that of decreasin@. As a consequence, the system can un-
If the number of reactive domains is large and the do-dergo a bifurcation by changing the separation of the do-
mains are randomly distributed one must solve a large set ahains.
coupled equations. In this circumstance the mean-field ap- If the domain size is large compared to the diffusion
proximation, Eq.(14), provides a means to study the bifur- length the interiors of the domains will be effectively decou-
cation structure. As an illustration we have considered a sygled from the rest of the system and higher valueb ofill
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2.0 : : : : : 2 : : : :
6 - 16} |
12} ] 1.2 ’//F\\ |
<c> | ] <C>
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04| 1 04t 7 1
00,6—=30 a0 80 80 70 80 98 00 0.05 0.10 0.15 0.20
D Y

FIG. 6. Bifurcation diagram constructed from an average over FIG. 8. Bifurcation diagram corresponding to a system which is
ten realizations of the distribution of reactive domains with periodicat pointA for the homogeneous medium. At high diffusititigh )
boundary conditions. Solid lines: results from E¢&7). Crosses: it is monostable; at intermediaf@ it becomes bistable and again
numerical solution of the reaction-diffusion equation. The ordinatemonostable at low values dd (low 7). (c) is the concentration
is the concentration averaged over the entire medium and realizawveraged over the entire medium. All parameters as in Fig. 3 with
tions. All kinetic parameters are the same as in Fig. 3. k_,=0.024. Dotted line is the unstable state.

be required to observe bistability. Thus, the system underkinetic parameters. For infinite diffusion, for any given sub-
goes a bifurcation from bistability to monostability &ss  strate, the contraction factafy/(y+k_,) is equal to 1 and
increased. However, if the inter-domain distance is kept conye recover the homogeneous substrate case: poifs dif-
stant ad is increased, effectively the domains get closer tofysjon is decreased, or equivalentlylds increased, the state
each other and this could lead again to blStabl'lty'E!; of the system is found on the line Connecting p(ﬁnwr[h
—1. This behavior of the stationary state is supported by outhe origin. First, the system will undergo a bifurcation to
model and has been confirmed by numerical simulations. Alpistability at pointB, and finally, at pointC, it will become
though these results were obtained for the Sghioecha-  monostable again. Figure 8 shows the bifurcation diagram
nism similar conclusions apply to a general chemical systemunder such circumstances. The range of valuesy dbr

A feature of this study is the possibility of inducing bista- which bistability exists can be calculated from the definitions
bility from compartmentalization in a range of kinetic pa- of » and g.

rameters for which the homogeneous system is monostable. |t js also clear from Fig. 7, that systems located in the
This is illustrated by poinA of Flg 7. We have shown that quadrant defined byB<IBC and a> a will remain

for a regular distribution of reactive domains the compart-monostable since variations gfwill not cause the system to
mentalization of the medium is equivalent to a contraction ofenter the cusp bistable region.

0.25 T T T T T V. DISCUSSION
The results in this paper show that there is a nontrivial
0.20 - . interplay between the diffusion process and compartmental-
ized reaction dynamics. For sufficiently large diffusion con-
0.15 - A 1 stants the behavior of the system depends weakly on the
| B spatial characteristics of the medium since diffusion is able
Os c to homogeneize the concentration field among the reactive
0.10 - . domains. In this limit the compartmentalized system behaves

like a homogeneous system. For lower values of the diffu-
sion coefficient or larger reactive domains, concentration

0.05 | . . . . o
gradients begin to form and lead to behavior qualitatively
different from that of the homogeneous system. Finally, in

0.0,< - 15 ' 55 L 70 the limit of very low diffusion each domain acts indepen-

|3$ dently and the concentrations attain values characteristic of
the steady states determined by reaction steps which take
FIG. 7. Phase diagram for the Schlanodel. At infinite diffu-  Place on the domains.
sion the inhomogeneous medium case is equivalent to the homoge- We have considered _only a few of the possibilities even
neous case. Ay is decreasecby decreasing or increasing) the  for the rather simple Schipp model. For example, one may
system moves on the straight line toward the origin; it becomesilso study situations where both reaction steps occur on the
bistable atB and again monostable &t same reactive domain. In such a caseJer 0, each domain
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can attain a steady state concentration independent of tldomains that support both reaction steps separated by large
other domains. If the kinetic parameters lie within theinterdomain distances.

bistable regime, the compartmentalized system will exhibit The methodology developed here is not restricted to time-
several solutions corresponding to all posible combinationgndependent states. In this context, E8). provides a means

of the two stable steady state solutions. WRerO but suf-  to study the effect of compartmentalization on the properties
ficiently small, or interdomain distance is large, a large vari-Of oscillatory or chaotic systems in one or more spatial di-
ety of inhomogeneous solutions with different domains inMmensions. One may consider applications to specifically de-
different stable states are found to persist. Similar situation§'9ned arrays of catalytic sites to probe reaction mechanisms
arise if the domains support only certain reaction steps. Fopr to _study how _aspects of the reaction mechanism affect
example, suppose one has a sequence of domains where ﬁ{baouc synchronization processds].

two steps of the reaction mgchanism alternatg from. one do- ACKNOWLEDGMENTS
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